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ing temperature, in part because these approaches
suffer from intrinsic uncertainties. Dynamic mea-
surements have long been considered the most
promising way to determine the ICB tempera-
ture because shocked Fe melts around 230 GPa,
yet the temperature determination (spanning from

5100 to 6350 K) and the possibility of super-
heating in shock compression (16) are major
uncertainties. Using laser heating in static dia-
mond anvil cell (DAC) experiments to produce
reliable melting data above 100 GPa is also dif-
ficult because of uncertainties in the pyrometric

temperature measurements (17), the criterion
used to identify the melting (18), and the possible
temperature-induced chemical reactions (18, 19).
In fact, estimation of Fe melting temperature at
ICB pressure based on static compression data
spans the range 4850 (8) to 7600 K (10). Finally,
the tremendous advances in computational ca-
pacity have enabled quantum-mechanics calcu-
lations of the melting behavior, but each method
has underlying approximations or assumptions.
For instance, melting temperatures from 6370
(14) to 7050 K (12) have been obtained with the
same melting criterion—the coexistence of a liq-
uid and solid phase in a molecular dynamics
run—but a different description of interatomic
forces within density functional theory. Going
beyond density functional theory with a quan-
tum Monte Carlo simulation, melting was ob-
tained at 6900 K (15) at 330 GPa.

Here, we report the laser-heated DAC de-
termination of the Fe melting curve from 50 to
200 GPa, using a mm-spatial and second-time-
resolved approach that has recently been applied
to the determination of the Ta melting line (18).
Fast x-ray diffraction (XRD) is used as the pri-
mary technique for structural determination. This
approach presents several advantages: (i) The
structural evolution of Fe can be followed dur-
ing heating; (ii) the measured volume expansion
of solid Fe provides an independent control of
temperature measurements; (iii) chemical reac-
tions, if any, can be observed within the few per-
centage detection limits; and (iv) most importantly,
an unambiguous bulk signature of melting—i.e.,
the appearance of a diffuse ring—is recorded
(9, 20). This technique offers an alternative to the
melting diagnostics used in the past in the laser-
heated DAC:motion of the sample surface (8, 10),
microscopic observation of the recovered sam-
ples (10), and plateaus/drops on the temperature
ramps (8, 21).

The XRD spectra obtained during heating
provide direct information about the physical
state of the laser-heated sample that can be cor-
related with additional information such as tem-
perature T versus time (Fig. 1). From this, we
determined that e-Fe (hexagonal close packed)
and g-Fe (face-centered cubic) are the only struc-
tures observed in the investigated pressure-
temperature range. This confirms earlier findings
of a large stability field for e-Fe (19, 22) and ex-
tends in temperature this domain up to the melt-
ing line at 200 GPa—e.g., under the conditions
where a transformation to a body-centered cu-
bic phase had been suggested using shock wave
measurements (23) or ab initio calculations (24).
XRD patterns also show, in a few cases, a partial
reaction of Fe with the diamond anvil, as shown
by the appearance of weak peaks that can be
assigned to Fe3C (20). Therefore, each heating
series was performed on a fresh, unheated zone
of the sample. Furthermore, we measured and
compared the volume of solid Fe with the ex-
pected volume based on the pyrometry tempera-
ture and the equation of state of e-Fe (25) or g-Fe
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Fig. 2. Pressure (PKCl)–temperature conditions at which XRD patterns have been collected.
Different symbols correspond to different Fe phases and textures. The continuous black lines correspond
to Eqs. 1, 2, and 3. Data are in table S1.
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Computational Science and Engineering

Predictive power of computing
marks a new era in science

closes the gap 
between theory and experiment
of complex models

can get rid of approximations

for some theories
only numerical solutions possible

Rüde et al 2016: Research and Education in Computational Science and Engineering 



1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS
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Figure 2: CSE pipeline, from physical problem to model and algorithms to efficient implementation in simulation
software with verification and validation driven by data. The pipeline is actually a loop that requires multiple
feedbacks.

part of CSE (Figure 3). They generally apply to a wide range of disciplinary problems where they can then lead
to breakthroughs that could not be achieved otherwise. For example, a novel method to simulate large ensem-
bles of interacting particles may become a central breakthrough achievement for an astrophysicist studying galaxy
formation as well as for a nanotechnology researcher exploring molecular dynamics. Ultimately, therefore, CSE
aims to develop a universal set of simulation methods and tools for scientists and engineers. The universality of
CSE is difficult to leverage in the classical disciplinary organization of science, however, and must be reflected in
education, in institutional structures, and in funding programs. This point becomes even more important because
the universality of CSE can also become a weakness in the competition for resources in research and education.
Institutional structure. Because of CSE’s intrinsically interdisciplinary nature and its research agenda reaching
beyond the traditional disciplines, the development of CSE is often impeded by traditional institutional boundaries.
CSE research and education have found great success over the past decade in those settings where CSE became a
clearly articulated focus of entire university departments,2 faculties,3 or large interdisciplinary centers.4 In many of
the newer universities in the world, institutional structures often develop naturally in line with the CSE paradigm.5
In other cases, institutional traditions and realities make it more natural for successful CSE programs to develop

2For example, the School of Computational Science & Engineering at the Georgia Institute of Technology and the Department of Scientific
Computing at Florida State University.

3For example, the Division of Computer, Electrical, and Mathematical Sciences and Engineering at the King Abdullah University of Science
and Technology (KAUST).

4For example, the Institute for Computational Engineering and Sciences at the University of Texas at Austin, the Scientific Computing and
Imaging Institute at the University of Utah, the Cluster of Excellence in Simulation Technology at the University of Stuttgart, and CERFACS
(Centre Europen de Recherche et de Formation Avance en Calcul Scientifique) in Toulouse.

5KAUST is, again, a good example.
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2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

Figure 5: Left: Moore’s law for algorithms to solve the 3D Poisson equation (black) plotted with Moore’s law
for transistor density (red), each showing 24 doublings (factor of approximately 16 million) in performance over
an equivalent period. For algorithms, the factor can be made arbitrarily large by increasing the problem size
N “ n3. Here n “ 64, which is currently a modest resolution even on a single processor. Right: Increase in
CSE model complexity and approximate computational cost over time, where the y-axis indicates a qualitative
notion of complexity in the combination of models, algorithms, and data structures. Simulations have advanced
from modestly sized forward simulations in simple geometries to incorporate complex domains, adaptivity, and
feedback loops. The stage is set for new frontiers of work on advanced coupling, numerical optimization, stochastic
models, and many other areas that will lead to truly predictive scientific simulations.

CSE Success Story: Lightning-Fast Solvers for the Computer Animation Industry

CSE researchers have teamed
up with computer animators
at Walt Disney Animation
Studios Research to dramat-
ically improve the efficiency
in linear system solvers that
lie at the heart of many
computer animation codes.
Building on advanced multi-
level methods originally de-
veloped for engineering sim-
ulations of elastic structures
and electromagnetic systems,
it was shown that movie an-
imations with cloth simulation on a fully dressed character discretized on an unstructured computa-
tional grid with 371,000 vertices could be accelerated by a factor of 6 to 8 over existing solution tech-
niques.10 These improvements in computational speed enable greater productivity and faster turnaround
times for feature film production with realistic resolutions. Another application is real-time virtual try-on
of garments in e-commerce.

10See video at https://youtu.be/_mkFBaqZULU and paper by R. Tamstorf, T. Jones, and S. McCormick, ACM SIGGRAPH Asia
2015, at https://www.disneyresearch.com/publication/smoothed-aggregation-multigrid/.

9

Moore’s law

complexity for the example of
3-dimensional Poisson equation

calculations per second
per 1000 $



  

Development of CPU power

● CPU power grows exponentially

● Cost drops reciprocally

Wikipedia



  

Development of storage

● Similar growth of storage 

– Density

– Costs

● Interesing: Crossing to paper ~2000

IBM SYSTEMS JOURNAL (2003)42:205
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At extreme scale:  optimal complexity is a must! 
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2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

CSE Success Story: Transforming the Petroleum Industry

Few industries have been
as transformed by CSE
as petroleum, in which a
decision to drill can com-
mit $100,000,000 or more.
Reservoir imaging solves
inverse problems (seismic
and electromagnetic) to
locate subsurface fluids in
highly heterogeneous media
and distinguish hydrocarbons
from water. Reservoir mod-
eling simulates the flow of
fluids between injection and
production wells. Correctly
predicting a pocket of oil left
behind can justify an entire
corporate simulation depart-
ment. Optimizing reservoir
exploitation while reducing uncertainty requires simulating many forward scenarios. Oil companies have
been behind the earliest campaigns to improve linear algebraic solvers and today operate some the world’s
most powerful computers. As shown in the figure,11 a reservoir is modeled with a coarse grid (left) and
with a finer grid (right). Diamonds are injection wells, and circles are production wells. Unresolved on the
coarse grid are two pockets of oil recoverable with horizontal drilling extensions.

Uncertainty quantification. Recent years have seen increasing recognition of the critical role of uncertainty quan-
tification (UQ) in all phases of the CSE lifecycle, from inference to prediction to optimization to decision-making.
Just as the results of an experiment would not be meaningful unless accompanied by measures of the uncertainty
in the experimental data, so too in CSE we need to know what confidence we can have in the predictions of our
models. This issue is becoming urgent as CSE models become accepted surrogates for reality, used increasingly
for decision-making about critical technological and societal systems. This has led to an explosion of interest in
UQ in the past few years. As one indication, the SIAM UQ conference now has more minisymposia than the
SIAM annual meeting. Moreover, several U.S. federal agency-commissioned reports focusing wholly or partially
on status, opportunities, and challenges in UQ have appeared in recent years [1, 35].

The need to quantify uncertainties arises in three problem classes within CSE: (1) The inverse problem: Given
a model, (possibly noisy) observational data, and any prior knowledge of model parameters (used in the broadest
sense), infer unknown parameters and their uncertainties by solving a statistical inverse problem. (2) The prediction
(or forward) problem: Once model parameters and uncertainties have been estimated from the data, propagate the
resulting probability distributions through the model to yield predictions of quantities of interest with quantified
uncertainties. (3) The optimization problem: Given an objective function representing stochastic predictions of
quantities of interest and decision variables (design or control) that can be manipulated to influence the objective,
solve the optimization problem governed by the stochastic forward problem to produce optimal values of these
variables.

These three classes can all be thought of as “outer problems,” since they entail repeated solution of the deter-
ministic forward problem, namely, the “inner problem,” for different values of the stochastic parameters. However,
viewing the stochastic inverse, forward, and optimization problems merely as drivers for repeated execution of the
deterministic forward problem is prohibitive, especially when these problems involve large complex models (such
as with PDEs) and high-dimensional stochastic parameter spaces (such as when parameters represent discretized
fields). Fundamentally, what ties these three problems together is the need to explore a parameter space where each

11Figure used by permission of Saudi Aramco.
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T. Dickopf, T. Krause, R. Kraus, and M. Potse, 
SIAM J Sci Comput 36(2), C163- C189, 2014. 

Example:
Computational Medicine

1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

• What is the best therapy for a patient with a specific disease that minimizes risk and maximizes success
probability?

• What are the intricate functions of the human brain, the human nervous system, and the cardiovascular
system, and how can we better understand them so as to prolong or improve our quality of life?

• What are the likely results of hurricanes, tornados, or storm surges on coastal regions, and what plans can be
implemented to minimize loss of human life and property?

• How will our climate evolve, and how can we predict the outcomes of climate change?
• How can a region be made less susceptible to failures in the power grid, and how can we devise strategies to

recover as quickly as possible when part of the power grid becomes inoperable?
Throughout this document, we highlight a few examples of CSE success stories in call-out boxes to illustrate how
combined advances in CSE theory, analysis, algorithms, and software have made CSE technology indispensable
for applications throughout science and industry.

CSE Success Story: Computational Medicine

Computational medicine has always
been at the frontier of CSE: the virtual
design and testing of new drugs and
therapies accelerate medical progress
and reduce cost for development and
treatment. For example, CSE re-
searchers have developed elaborate
models of the electromechanical activ-
ity of the human heart.1 Such complex
processes within the human body lead
to elaborate multiscale models. Car-
diac function builds on a complicated
interplay between different temporal
and spatial scales (i.e., body, organ,
cellular, and molecular levels), as well
as different physical models (i.e., me-
chanics, electrophysiology, fluid me-
chanics, and their interaction). CSE advances in computational medicine are helping, for example, in
placing electrodes for pacemakers and studying diseases such as atrial fibrillation. Opportunities abound
for next-generation CSE advances: The solution of inverse problems can help identify suitable values
for material parameters, for example, to detect scars or infarctions. Using uncertainty quantification, re-
searchers can estimate the influence of varying these parameters or varying geometry.

1.5 CSE: A New Academic Endeavor
CSE is unique in that it enables progress in virtually all other disciplines by providing windows of discovery when
traditional means of research and development reach their limits. Many CSE problems can be characterized by a
pipeline that includes mathematical modeling techniques (based on physical or other principles), simulation tech-
niques (discretizations of equations, solution algorithms, data structures, software libraries and frameworks), and
analysis techniques (data mining, data management, and visualization, as well as the analysis of error, sensitivity,
stability, and uncertainty). In practice the CSE pipeline is a loop connected through multiple feedbacks, as illus-
trated in Figure 2. Models are revised and updated with new data. When they reach a sufficient level of predictive
fidelity, they can be used for design and control, which are often posed formally as optimization problems.
Universality. CSE research often creates broad impact, since CSE methods and findings tend to have wide appli-
cability beyond any single discipline. The abstract concepts of algorithm and method development form a central

1Parallel and adaptive simulation method described in T. Dickopf, T. Krause, R. Kraus, and M. Potse, SIAM J Sci Comput 36(2), C163-
C189, 2014.
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Computer-Aided
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Assess the functional 
behavior of products 
early in the design 
cycle when physical 
prototypes are not yet 
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of virtual testing 
compared with 
physical testing, 
include flexibility, 
speed, and cost.“

3 CSE EDUCATION AND WORKFORCE DEVELOPMENT

CSE Success Story: Computer-Aided Engineering in the Automotive Industry

CSE-based simulation using
computer-aided engineering
(CAE) methods and tools
has become an indispensable
component of developing ad-
vanced products in industry.
Based on mathematical mod-
els (e.g., differential equa-
tions and variational princi-
ples), CAE methods such as
multibody simulation, finite
elements, and computational
fluid dynamics are essential
for assessing the functional
behavior of products early in
the design cycle when phys-
ical prototypes are not yet
available. The many advan-
tages of virtual testing com-
pared with physical testing,
include flexibility, speed, and cost. This figure16 shows selected application areas of CAE in the auto-
motive industry. CSE provides widely applicable methods and tools. For example, drop tests of mobile
phones are investigated by applying simulation methods that are also used in automotive crash analysis.

3.3 Graduate Program Learning Outcomes
A learning outcome is defined as what a student is expected to be able to do as a result of a learning activity. In
this section, we describe a set of learning outcomes desired of a student graduating from a CSE Ph.D. program.
We focus on outcomes because they describe the set of desirable competencies without attempting to prescribe any
specific degree structure. These outcomes can be used as a guide to define a Ph.D. program that meets the needs
of the modern CSE graduate; they can also play an important role in defining and distinguishing the CSE identity
and in helping employers understand the skills and potential of CSE graduates.

In Table 1, we focus on the “CSE Core Researchers and Developers” category in Figure 4. We distinguish
between a CSE Ph.D. with a broadly applicable CSE focus and a CSE Ph.D. with a domain-driven focus. An
example of the former is a “Ph.D. in computational science and engineering” while an example of the latter is a
“Ph.D. in computational geosciences.” The listed outcomes relate primarily to those CSE-specific competencies
that will be acquired through classes. Of course, the full competencies of the Ph.D. graduate must also include
the more general Ph.D.-level skills, such as engaging deeply in a research question, demonstrating awareness of
research context and related work, and producing novel research contributions, many of which will be acquired
through the doctoral dissertation. We also note that it would be desirable for graduates of a CSE master’s degree
program to also achieve most (if not all) of the outcomes in Table 1. In particular, in educational systems with no
substantial classwork component for the Ph.D., the learning outcomes of Table 1 would also apply to the master’s
or honors degree that may precede the Ph.D.

In the next two subsections, we elaborate more on the interaction between CSE education and two areas that
have seen considerable change since the design of many existing CSE programs: extreme-scale computing and
computing with massive data.

16Figure courtesy of AUDI AG.
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Example:
Visual analytics
brings insight
to TByte of data

2 CHALLENGES AND OPPORTUNITIES IN CSE RESEARCH

algorithms for solution of Bayesian inverse problems, in which one combines possibly uncertain data and models
to infer model parameters and their associated uncertainty. When the parameter space is large and the models are
expensive to solve (as is the usual case in geoscience inverse problems), the Bayesian solution is prohibitive.

However, advances in large-scale UQ algorithms in recent years [1] are beginning to make feasible the use of
Bayesian inversion to infer parameters and their uncertainty in large-scale complex geoscience systems from large-
scale satellite observational data. Two examples are global ocean modeling and continental ice sheet modeling.
Continued advances in UQ algorithms, Earth observational systems, computational modeling, and HPC systems
over the coming decades will lead to more sophisticated geoscience models capable of much greater fidelity.
These in turn will lead to a better understanding of Earth dynamics as well as improved tools for simulation-based
decision making for critical Earth systems.

Big data methods are revolutionizing the related fields of chemistry and materials science, in a transformation
that is illustrative of those sweeping all of science, leading to successful transition of basic science into practical
tools for applied research and early engineering design. Chemistry and materials science are both mature com-
putational disciplines that through advances in theory, algorithms, and computer technology are now capable of
increasingly accurate predictions of the physical, chemical, and electronic properties of materials and systems.
The equations of quantum mechanics (including Schrödinger’s, Dirac’s, and density functional representations)
describe the electronic structure of solids and molecules that controls many properties of interest, and statisti-
cal mechanics must be employed to incorporate the effects of finite temperature and entropy. These are forward
methods—given a chemical composition and approximate structure, one can determine a nearby stable structure
and compute its properties. To design new materials or chemical systems, however, one must solve the inverse
problem—what is the system that has specific or optimal properties? Moreover, the system must be readily syn-
thesized, inexpensive, and thermally and chemically stable under expected operating conditions. Breakthrough
progress has recently been made in developing effective constrained search and optimization algorithms for pre-
cisely this purpose [7], with this process recognized in large funding initiatives such as the multiagency U.S.
Materials Genome Initiative [14]. This success has radically changed the nature of computation in the field. Less
than ten years ago most computations were generated and analyzed by a human, whereas now 99.9% of computa-
tions are machine generated and processed as part of automated searches that are generating vast databases with
results of millions of calculations to correlate structure and function [30, 33]. In addition to opening important
new challenges in robust and reliable computation, the tools and workflows of big data are now crucial to further
progress.

CSE Success Story: Visual Analytics Brings Insight to Terabytes of Simulation Data

New techniques are being de-
veloped that allow scientists
to sift through terabytes of
simulation data in order to
discover important new in-
sights deriving from science
and engineering simulations
on the world’s largest super-
computers. The figure shows
a visualization of a topologi-
cal analysis and volume ren-
dering of one timestep in
a large-scale, multi-terabyte
combustion simulation. The
topological analysis identi-
fies important physical features (ignition and extinction events) within the simulation, while the volume
rendering allows viewing the features within the spatial context of the combustion simulation.13

13Simulation by J. Chen, Sandia National Laboratories; visualization by the Scientific Computing and Imaging Institute, University of Utah.
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Topological analysis (ignition and extinction events) and volume rendering 
of a combustion simulation.
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Example:
Plasticity at various scales:

2-dimensional finite-element simulation



statistical simulations based
on parameterized constitutive laws



dislocation dynamics



molecular dynamics



Methods
at the nano-micro level



Methods 
at the micro-meso level



Methods 
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Simulation techniques:
Outline

• ab initio techniques: electron structure
• atomistic techniques:   molecular dynamics
• statistical techniques:  kinetic Monte Carlo 
• mesoscopic technique: granular mechanics



Ab initio modelling
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Computation and education









1 CSE: DRIVING SCIENTIFIC AND ENGINEERING PROGRESS

within existing departments6 or in cross-departmental7 or cross-faculty8 initiatives. Information about a variety
of CSE educational programs can be found online [40, 11]. In any case, universities and research institutes will
need to implement new and effective multidisciplinary structures that enable more effective CSE research and
education. To fully realize its potential, the CSE endeavor requires its own academic structures, funding programs,
and educational programs.

CSE Success Story: SIAM Working Group Inspires Community to Create CSE Education Programs

The landmark 2001 report on
“Graduate Education in Com-
putational Science and En-
gineering” by L. Petzold et
al. [36] played a critical role in
helping define the then-nascent
field of CSE. The report pro-
posed a concrete definition of
CSE’s core areas and scope,
and it laid out a vision for CSE
graduate education. In doing
so, it contributed a great deal
to establishing CSE’s identity,
to identifying CSE as a priority
interdisciplinary area for fund-
ing agencies, to expanding and
strengthening the global offerings of CSE graduate education, and ultimately to creating the current gener-
ation of early-career CSE researchers.
Much of the 2001 report remains relevant today; yet much has changed. Fifteen years later, there is a
sustained significant demand for a workforce versed in mathematics-based computational modeling and
simulation, as well as a high demand for graduates with the interdisciplinary expertise needed to develop
and/or utilize computational techniques and methods in many fields across science, engineering, business,
and society. This demand necessitates that we continue to strengthen existing programs as well as leverage
new opportunities to create innovative programs.

1.6 Challenges and Opportunities for the Next Decade
While the past several decades have witnessed tremendous progress in the development of CSE methods and their
application within a broad spectrum of science and engineering problems, a number of challenges and opportunities
are arising that define important research directions for CSE in the coming decade.

In science and engineering simulations, large differences in temporal and spatial scales must be resolved to-
gether with handling uncertainty in parameters and data, and often different models must be coupled together to
become complex multiphysics simulations. This integration is necessary in order to tackle applications in a mul-
titude of new fields such as the biomedical sciences. High-fidelity predictive simulations require feedback loops
that involve inverse problems, data assimilation, and optimal design and control. Algorithmic advances in these
areas are at the core of CSE research; and in order to deal with the requirements of ever more complex science and
engineering applications, new fundamental algorithmic developments are required.

Several recent disruptive developments yield the promise of further fundamental progress if new obstacles can
be overcome. Since single-processor clock speeds have stagnated, any further increase of computational power

6For example, the master’s program in CSE at the Technische Universität München.
7For example, CSE graduate programs in engineering faculties at the University of Illinois at Urbana-Champaign, at the Massachusetts

Institute of Technology, and at the Technische Universität Darmstadt
8For example, the School of Computational Science and Engineering at McMaster University, the Institute for Computational and Mathe-

matical Engineering at Stanford University, and the master’s program in CSE at the Ecole Polytechnique Federale de Lausanne.
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