Computational Materials Science - overview -

Herbert M Urbassek

ion impact

fracture

understand properties of materials using modelling in particular computation

here: atomistic methods

Why modelling?

Fe at temperature 5000 K pressure 300 GPa

Fig. 3. Phase stability domains for Fe obtained in the literature and in this study. The stability field for ε -Fe is based on the current study data and data from (*19*).

When does iron melt?

Ab initio simulations can help

Anzellini et al., Science 340 (2013) 464

In a cell

passage of ethanol through acetylcholine receptor

Outline

Introduction: Why simulation?

Simulation techniques Length and time scales Multiscale Modelling

Outlook: The future of modelling Computation and education Why modeling?

Experiment

observation measurement

Theory

analytical models differential equations mathematical models Why modeling?

Experiment

observation measurement

Theory

analytical models differential equations mathematical models

Computational Science

numerical methods large-scale simulation optimization big data virtual reality

Computational Science and Engineering

Rüde et al 2016: Research and Education in Computational Science and Engineering

A loop: requires multiple passes and feedbacks

HPC: High Performance Computing

Moore's law

complexity for the example of 3-dimensional Poisson equation

calculations per second per 1000 \$

Development of storage

IBM SYSTEMS JOURNAL (2003)42:205

Supercomputer

AHRP Kaiserslautern JUQUEEN

- Elwetritsch II
 - Dell
 - 144 nodes
 - 2122 Cores
- Mogon II
 - Megware
 - 824 nodes
 - 16.280 cores
 - TOP 500: #265

- Blue Gene/Q architecture
- 458,752 PowerPC A2 cores
- 16 cores (1.6 GHz) per node
- I6 GiB RAM per node
- 5D torus interconnect
- 5.8 PFlops Peak
- TOP 500: #19

Sunway TaihuLight

- SW26010 processor
- 10,649,600 cores
- 260 cores (1.45 GHz) per node
- 32 GiB RAM per node
- 125 PFlops Peak
- Power consumption: 15.37 MW
- TOP 500: #1

"Extreme scale" simulations

On Juqueen vectors with 10¹³ elements can be stored

10¹² - these are BIG problems

		Energy		
computer generation	gigascale: 10 ⁹ FLOPS	terascale 10 ¹² FLOPS	petascale 10 ¹⁵ FLOPS	exascale 10 ¹⁸ FLOPS
desired problem size DoF=N	10 ⁶	10 ⁹	10 ¹²	10 ¹⁵
energy estimate (kWh) 1 NJoule × N ² all-to-all communication	0.278 Wh 10 min of LED light	278 kWh 2 weeks blow drying hair	278 GWh 1 month electricity for Berlin	278 PWh 100 years world electricity production
TerraNeo prototype (kWh)	0.13 Wh	0.03 kWh	27 kWh	?

Example: Petroleum industry

"Correctly predicting a pocket of oil left behind can justify an entire corporate simulation department."

Grid refinement identifies two reservoirs

Rüde et al 2016

Example: Computational Medicine

Electromechanical activity in heart: detect scars study diseases place electrodes

"The virtual design and testing of new drugs and therapies accelerate medical progress and reduce cost for development and treatment."

T. Dickopf, T. Krause, R. Kraus, and M. Potse, SIAM J Sci Comput 36(2), C163- C189, 2014.

Example: Computer-Aided Engineering

Assess the functional behavior of products early in the design cycle when physical prototypes are not yet available.

"The many advantages of virtual testing compared with physical testing, include flexibility, speed, and cost."

Rüde et al 2016

Example: Visual analytics brings insight to TByte of data

Topological analysis (ignition and extinction events) and volume rendering of a combustion simulation.

Rüde et al 2016

Outline

Introduction: Why simulation?

Simulation techniques in Materials Science Length and time scales Multiscale Modelling

Outlook: The future of modelling Computation and education

Length and time scales

Figure 1.1: Some characteristic space and time scales, (a) number of atoms in a cube, (b) characteristic times of typical simulation problems.

Example:

Plasticity at various scales:

2-dimensional finite-element simulation

statistical simulations based on parameterized constitutive laws

dislocation dynamics

molecular dynamics

Methods at the nano-micro level

Scale [m]	Simulation method	Typical applications
$10^{-10} - 10^{-6}$	Metropolis Monte Carlo	thermodynamics, diffusion, ordering
$\frac{10^{-10}-10^{-6}}{10^{-10}-10^{-6}}$	cluster variation method Ising model	thermodynamics magnetism
$10^{-10} - 10^{-6}$	Bragg-Williams-Gorsky model	thermodynamics
$10^{-10} - 10^{-6}$	molecular field approximation	thermodynamics
$10^{-10} - 10^{-6}$	molecular dynamics (embedded atom, shell, empirical pair, bond order, effective medium, and second moment potentials)	structure and dynamics of lattice defects
$10^{-12} - 10^{-8}$	ab-initio molecular dynamics (tight-binding potentials, local density functional theory)	materials constants, structure and dynamics of simple lattice defects

Methods at the micro-meso level

Scale [m]	Simulation method	Typical applications	
$10^{-10} - 10^{0}$	cellular automata	recrystallization, grain growth, and phase transformation phenomena, fluid dynamics, crystallographic texture, crystal plasticity	
$10^{-7} - 10^{-2}$	spring models	fracture mechanics	
$10^{-7} - 10^{-2}$	vertex models, network models, grain boundary dynamics	subgrain coarsening, recrystallization, secondary recrystallization, nucleation, recovery, grain growth, fatigue	
$10^{-7} - 10^{-2}$	geometrical, topological, and component models	recrystallization, grain growth, secondary recrystallization, crystallographic textures, solidification, crystal topology	
$10^{-9} - 10^{-4}$	dislocation dynamics	crystal plasticity, recovery, microtexture, dislocation patterning, thermal activation	
$10^{-9} - 10^{-5}$	kinetic Ginzburg–Landau- type phase field models	diffusion, interface motion, precipitation formation and coarsening, polycrystal and polyphase grain coarsening phenomena, isostructural and non-isostructural phase transformation, type II superconductivity	
$10^{-9} - 10^{-5}$	multistate kinetic Potts models	recrystallization, grain growth, phase transformation, crystallographic textures	

Methods at the meso-macro level

Scale [m]	Simulation method	Typical applications
$10^{-5} - 10^{0}$	large-scale finite element, finite difference, linear iteration, and boundary element methods	averaged solution of differential equations at the macroscopic scale (mechanics, electromagnetic fields, hydrodynamics, temperature fields)
$10^{-6} - 10^{0}$	crystal plasticity finite element models, finite elements with advanced constitutive laws considering microstructure	microstructure mechanics of complex alloys, fracture mechanics, textures, crystal slip, solidification
$10^{-6} - 10^{0}$	Taylor–Bishop–Hill, relaxed constraints, Sachs, Voigt, and Reuss models, Hashin– Shtrikman model, Eshelby and Kröner-type self- consistent models	polyphase and polycrystal elasticity and plasticity, microstructure homogenization, crystallographic textures, Taylor factors, crystal slip
$10^{-8} - 10^{0}$	cluster models	polycrystal elasticity
$10^{-10} - 10^{0}$	percolation models	nucleation, fracture mechanics, phase transformation, current transport, plasticity, superconductivity

Multiscale modelling

Simulation techniques: Outline

- ab initio techniques: electron structure
- atomistic techniques: molecular dynamics

- statistical techniques: kinetic Monte Carlo
- mesoscopic technique: granular mechanics

Ab initio modelling

Why do we need quantum mechanics?

1) Bonding and Structure

Paraelectric (cubic) and ferroelectric (tetragonal) phases of PbTiO3

2) Electronic, optical, magnetic properties

3) Dynamics, chemistry

Diels-Alder Reaction: 1,3-butadiene + ethylene \rightarrow cyclohexene

http://www.wag.caltech.edu/home-pages/jim/

Courtesy of James Kendall. Used with permission.

Molecular dynamics

Outline

Introduction: Why simulation?

Simulation techniques Length and time scales Multiscale Modelling

Outlook: The future of modelling Computation and education

computational cluster

The future of modeling

What does more computing buy you?

Doubling every two years 40 years -> 10⁶ increase in performance

But, ... scaling

Molecular Dynamics with potentials

DFT (LDA, GGA)

Hartree Fock

O(N)

O(N³ or N²log(n))

O(N4)

Method	Today (atoms)	+40 years
MD (potentials)	10 ⁸ atoms	10 ¹⁴ atoms
LDA (N ³)	1000	100,000
LDA(N)	1000	10 ⁹
HF +CI(N ⁶)	10	100

Scaling for length

$$N = L^3$$

Towards Predictive Science

Rüde 2016

Computation and education

Issues: How to make impact?

Theory of Properties: The Multi-Scale Materials View

Theory of Properties: A More Realistic View

SIAM REVIEW Vol. 43, No. 1, pp. 163–177 © 2001 Society for Industrial and Applied Mathematics

Graduate Education in Computational Science and Engineering^{*}

SIAM Working Group on CSE Education[†]

Abstract. Computational science and engineering (CSE) is a rapidly growing multidisciplinary area with connections to the sciences, engineering, mathematics, and computer science. In this report we attempt to define the core areas and scope of CSE, to provide ideas, advice, and information regarding curriculum and graduate programs in CSE, and to give recommendations regarding the potential for SIAM to contribute.

PII. S0036144500379745

Rüde et al 2016

Zuse Z3 (1941)

.....

......

.....