Hybrid Fortran

High Performance & Productivity for GPU Numerics

Talk

Michel Muller

Postdoctoral Researcher ETH Zurich
~ Dr. Eng., Tokyo Institute of Technology

2018-11-01

Outline

1. Introduction
2. Method

3. Application
4. Performance
5. Conclusion

NWP and Computational Performance

- Increase in computational performance allows increasing grid
resolution.

- During last decade this allows resolution of increasingly small
cloud formations in dynamical core.

. Typically applied finite-volume and finite-difference based
discretization methods are bottlenecked by memory bandwidth
in the dynamics.

= Hardware architectures with high memory bandwidth are
seeked.

1. Introduction

Moore’s Law still holds,

20,000,000,000
10,000,000,000

5,000,000,000

1,000,000,000

8-core Xeon Nehalem- EX\

Six-core Xeon 7400
Dual-core Itanium 2¢p

Pentium D Presler WE%
ltanium 2 with
9 MB cache®p °
‘AMD K10 quad-core 2M L3

IBM z13 Storage Controller.

18-core Xeon Haswell-E5

Xbox One main SoC\\

61-core Xeon Phi
12-core POWER '8

SPARC M7
\d

© 022 core Xeon Broadwell-E5

b15-core Xeon Ivy Bridge-EX
€©IBM z13
Apple AB8X (tri-core ARM64 "mobile SoC")
28 core Core i7 Haswell-
Duo-core + GPU Ins Core i7 Broadwell-U

Quad-core + GPU GT2 Core i7 Skylake K
Quad -core + GPU Core i7 Haswell
Apple A7 (dual-core ARM64 "mobile SoC")

300

Core i7 (Quad)

500,000,000 Itanium 2 Madison 6M€p Core 2 Duo Wolfdale
Pentium D Smithfield ore 2 Duo Conroe
Itanium 2 McKinley¢y -4 ell @ Core 2 Duo Wolfdale 3M
Pentium 4 Prescott-2M¢p \QCore 2 Duo Allendale

100,000,000 AVD K89 i 4 proacort
E 50’000’000 Pentiumpjrwﬁgr:er;ltzrtohwg;do ®Barton QAtom
-] Pentium Il Mobile Dixon eqtium lil;Tualatin
8 AM?\ % §6$Pentlum Il Coppermine QARM Cortex-A9
g 10,000,000 N X
— Pentium Prq, I
72 5,000,000 @ Kiamath
% Pen'uumo AMD K5
I: SA-110

1.000.000 Intel 80486° QR hoo
500,000 Lissmachine onp @ x5
Intel 80386° Intel° © ARM 3
Motorola 68020 ¢p o
9 RERHE
100,000 i Intel 80286 AgM
68000¢p 9TDMI
50,000 @ Intel 80186
Intel 80864 €pIntel 8088 QARM 2 AF& 6
?RM1
Matorol
10,000 T™sjo00 Zilog Z8Q 8609 2. 650816N ovix
RCA 1802 85502
5,000 8008¢, ingel 8080 o
Motorola MO%TechnoIogy
Intel 4&)4 6800 o=
1,000
AL\ RS- LU G- S-S Je e U\ e S e SR\ M N o SN SRR NN S
R DRI PC P QP QR PR P P

Data Source: https://en.wikipedia.org/wiki/Transistor_count,

Visualization by Max Roser (CC-BY-SA)

1. Introduction

... however Dennard scaling does not.

Dennard scaling: Power density of micro transistors
proportional to area.

- Clock frequency/single threaded perf. scales inverse
proportionally to transistor size

Since 90nm process technology (~2004-2005), Dennard
scaling does not hold anymore.

Leakage currents increasingly limit advancements in single
threaded performance.

1. Introduction

Latency- versus Throughput Oriented Processing

Latency: Time elapsed between initiation and completion of a
task.

Throughput: Total amount of work completed per unit time.

+ Due to end of Dennard scaling:

= shift from latency-oriented processor design to throughput-
oriented

= applications only profit when adapted accordingly

1. Introduction 6

GPU Computing

+ Graphics Processing Units (GPUs) are a popular type of
throughput-oriented processors.

+ Today has many applications outside of graphics.

- Applications need to be highly parallelizeable, as GPUs
have a high latency to complete a single task compared to
CPUs.

1. Introduction

GPU Computing - High memory bandwidth
- Support for branching, 64bit FP

- Fine-grained parallelism
- Memory access performance highly sensitive

grid to memory layout
thread - Different involved memories require
management

thread block

Host Device
Memor [Memory

GPU I

e

v
NNANIASNIENANNI R N

- o \OpenACC

rrrrrrrrrrrrrrrrrrrrrrrrr

OpenMP

NN NN N NN RN

NN NN NN N NN

NN NN N NN

NN NN N NN RN

NN NN RN NN RN

_) 11 GB/s \ =)

1. Introduction

ASUCA NWP Model

What is ASUCA?

- Asuca is a System based on a Unified Concept for
Atmosphere”

- fully compressible, non-hydrostatic weather prediction model
regional scale - as depicted in Figure 1.2

- one of main operational forecast models in Japan, in
production since 2014

48N
45N
aoN{ T

30N ; F
36N
33N
30N
27N
24N+

21N+

"

- spatial discretization: finite-volume method on Arakawa-C-type

rectangular grid
- time discretization:

- third-order Runge-Kutta based iteration scheme for
advection and Coriolis force

- time-splitting method, employing secondary third-order
Runge-Kutta iteration with short time step for sound- and
gravity waves

- vertical-only models for parametrization of radiation, planetary
boundary layer and surface physical processes

OF 115E 120E 125 130E 135E 140E 145 150E 155E

Figure 1.2: ASUCA’s model
simulation boundaries

1. Summary: Introduction

GPUs for Numerical Weather Prediction

- GPUs offer high memory bandwidth, which is in high demand in NWP.
= GPUs are an attractive target architecture.
-+ Major problems to solve for existing regular grid NWP codes:
- Memory layout needs change
- Code granularity in physical processes too coarse for GPU
- Existing methods to solve these problems:
+ Only apply GPU to dynamical core.

- Rewrite Fortran code using C++ templates for architecture
specialization.

- Code divergence between CPU and GPU to solve granularity
Issues.

- Unsatisfactory to maintain a unified, coherent and efficient code base
iIn Fortran (the standard in NWP)

- For ASUCA, a solution with none of these drawbacks was sought.

1. Introduction 10

Background

v paradigm shift towards throughput oriented design

v GPUs attractive for NWP (high mem. bandwidth)

v productivity and maintainability of GPU approaches
lacking

—

Motivation

—

v Many of today’s NWP- and climate models cannot
make efficient use of high-throughput architectures. We
want to find and prove easily adoptable approach.

Goal

v' GPU port for “ASUCA” NWP model in Fortran with
minimal code divergence / minimal learning

Contributions

—

O new granularity abstraction and memory layout
transformation method

0 applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required
for a full scale run with real data

0 method unique in increasing productivity for porting
coarse-grained codes to GPU

. Method

Granularity Abstraction

Memory Layout &
Regions

Code Transformation

11

Assumptions for Design

- Mainly used data structure is Fortran arrays of different
dimensions and data types.

+ Kernels are data parallel.

+ Existing inter-node / inter-GPU communication code can be
reused.

2. Method

12

ASUCA Code Structure

simulation
for t € [0,tend]:

physics run

dycore forje[1,ny]:

S

fori e [1,nx]:

radiation

Legend

N ole—

>]

surface

g @
@

.
routine ‘_p call

for x € [a, b]:
.. Statements ..

loop repeating
.. Statements ..
for each x € [a, b]

> [|
planetary boundary

’ll.l—’

—

—>

| Q= S

= Physics difficult to port

shortwave rad.
for k € [1,nz]:

.. pointwise process ..

surf. flux

.. pointwise process ..

p.b. phi calc

.. pointwise process ..

J + Applying GPU only to dynamical core

requires expensive host-device-
communication for every timestep

2. Method

13

Key Problems

1. Code Granularity

Definition of granularity:
The amount of work done by one thread.

fine-grained: low amount of work per thread
coarse-grained: high amount of work per thread

Two types of granularity:
a) runtime defined
b) code defined

physics run
simulation dycore| | forje[1,ny]:
for t € [0,tend]: - for i e [1,nx]:

O "

shortwave rad.

—» forke[1,nz]:
.. pointwise process ..

radiation surf. flux

— .. pointwise process ..
surface
’I En

planetary boundary p.b. phi calc

’_
O > -
O

pu: s s ——3p .. POINtwise process ..

2. Method

14

Key Problems

2. Memory Layout

nx

WI’

S0 1 Y e

nx nx

nx
> | >

> |

simulation
for t € [0,tend]:

physics run
dycore forje[1,ny]:

fori e [1,nx]:

Performant layout on CPU: Keep fast
varying vertical domain in cache — k-first
Example stencil in original code:
A_out(k,i,j) = A(k,i,)) + A(k,i-1,j) ...

GPU: Requires i-first or j-first for coalesced
access

shortwave rad.

—» forke[1,nz]:
.. pointwise process ..

radiation surf. flux

- -

— .. pointwise process ..
surface
>l En

g O

planetary boundary p.b. phi calc

pu: s s ——3p .. POINtwise process ..

2. Method

15

Hybrid Fortran

Malin ideas:

- Allow efficient many-core GPU port while maintaining multi-
core CPU compatibility

. Delegate parallelization boilerplate to framework
- Allow multiple parallelization granularities for the same code
-+ Transform memory layout for each target architecture

2. Method 16

Parallelization & Granularity Abstraction

explicit parallelization -

orthogonal to allows multiple
sequential loops parallelization
doi=1. nx granularities
doj=1,ny [@parallelRegion{
| ..pointwise code.. domName(i,j), domSize(nx,ny), appliesTo(CPU)
Y
| ..pointwise code..
Creates CUDA Fortran, OpenACC or CPU
multicore-OpenMP based parallelization,
depending on backend.
2. Method 17

4)
routine ‘_> call

loop repeating

Example Physical Process 2%

for x € [a, b]:

.. statements Statements ..
for each x € [a, b]
\, y
shortwave rad.
physics run — forke[1,nz]:

for t [0,tend]: forie [1,nx]:

‘ radiation surf. flux

‘ ‘ P — .. pointwise process ..
' > surface ‘ |
‘ p-= n = '

planetary_beuﬁaéry p.b. phi calc

' — 5« » s——p .. pointwise process ..
1t= tile_land
example reference code from £ Gty > 0.0_s i)
call sf slab_flx land_ run(&
Surface ﬂUX ! ..._inpu_ts a_nd fu_rther tile variables omitted
& taux_ tile_ex(1lt), tauy_tile_ex(lt) &
&)
’ '?hatal parallillsmd nOt exposed at u_f(lt) = sqrt(sqrt(taux_tile_ex(lt) *x 2 + tauy_tile_ex(lt) *x 2))
else
IS ayer O CO e taux_tile_ex(lt) = 0.0__r_size
= Coarse-gralned para”ellzatlon sa??_tllciler_tz};f'lttilj ?féorlfa%b_lsel:eomitted
end if

2. Method 18

Example Physical Process Using Hybrid Fortran

shortwave rad.

.. forke[1,nz]:
Ll € .. pW. proc.
[1,nx], PW- P
Legend [1,ny]
P .)
routine '—} call simulation
forte [O,tend]. dycore
for x € [a, b]: loop repeating
.. statements .. statements .. ‘ > - Surf f|UX
for each x € [a, b] ‘ >
B . PW. proc.
i,j €
. execute (1.0
%) .. statements .. . ,‘[1',‘I"1y]
ij e S in parallel for each physics run diat
[1.nx], & i,j e [1,nx], [1,ny] radiation '
[1.ny] & if the executable is QU
? compiled for ij e surfa’éé
Otr;e{wise rtun . [1,nx], I F— | p.b. phi calc
';ir:ea, ements.. a single e [1,ny] p]anetary boundary —
’l n l_>
) €
[1,nx],
[1.ny]

-+ pointwise code reused

- code transformed to apply fine-
grained parallelism

- appliesTo clause to specify
parallelization target

- call graph transformed globally to
expose data parallelism at
required granularity

@parallelRegion{appliesTo (GPU), domName(i,j), domSize(nx,ny)?}
1t = tile__land
if (tlevr(lt) > 0.0__r_size) then
call sf_slab_flx_land_run(&
!' ... Iinputs and further tile variables omitted
& taux_tile_ex(1lt), tauy_tile_ex(lt) &
&)

u_f(lt) = sqrt(sqrt(taux_tile_ex(1lt) *x*x 2 + tauy_tile_ex(lt) *x*x 2))
else
taux_ tile_ex(1t) 0.0_r_size
tauy_ tile_ex(1t) 0.0__r_size
' ... further tile variables omitted
end if
!' ... sea tiles code and variable summing omitted
@end parallelRegion

2. Method

19

Data Specifications

Data specifications:

- autoDom: extend existing data domain specification with parallel domain given by
@domainDependant directive.

- domName, domSize attributes specify horizontal extension of data domain
- present: data is already present on device.
- requires counterpart specification at data region boundaries with transferHere attribute

@domainDependant {domName(i,j), domSize(nx,ny), attribute (autoDom, present)}’
tlcvr , taux_ tile_ex, tauy_tile_ex, u_f
@end domainDependant

@parallelRegion{appliesTo (GPU), domName(i,j), domSize(nx,ny)}
1t = tile_land
if (tlcvr(lt) > 0.0_r_ size) then
call sf_ slab_flx land_ run(&
' ... inputs and further tile variables omitted
& taux_ tile_ex(1lt), tauy_tile_ex(1lt) &
&)

u_f(1lt) = sqrt(sqrt(taux_tile_ex(lt) ** 2 4+ tauy_tile_ex(lt) ** 2))

else
taux_tile _ex(lt) = 0.0 __r_ size
tauy__tile_ex(1lt) = 0.0_r_size
' ... further tile variables omitted
end if

' ... sea tiles code and variable summing omitted
@end parallelRegion

2. Method

20

Transformed Code

Example surface flux kernel transformed with OpenACC backend.

OpenACC parallelization
data specifications

!'$acc kernels deviceptr(tauz_tile_exz) deviceptr(tauy_tile_exz) & "b|ocksize macros
!$accé deviceptr(tlcur) deviceptr (u_f)
!$acc loop independent vector (CUDA_BLOCKSIZESY)
outerParallellLoopO: do j=1,ny®—
!$acc loop independent wvector (CIDA—BEOCKSIZE_X)
do i=1,nx e—
!I' *x* loop body *x*xx*
1t = tile_land

— . parallel loops

if (tlcvr(AT(i,j,1t))> 0.0_r_size) then horizontal domain
call sf_slab_flx_land_run (& extension of data
' ... dnputs and further tile wariables omitted
& taux_tile_ex(AT(i,j,1t)), tauy_tile_ex(AT(i,j,1t))
— &
&) storage
u_f(AT(i,j,1t))= sqrt(sqrt(taux_tile_ex(AT(i,j,1lt) D**x 2 + & ordering macro
& tauy_tile_ex(AT(i,j,1t))x*x*x 2))
else
taux_tile_ex(AT(i,j,1t))= 0.0_r_size
tauy_tile_ex(AT(i,j,1lt))= 0.0_r_size line breaks
' ... further tile wariables omitted
end if
!' ... sea tiles code and wvartable summing omitted
end do

end do outerParallelLoopO
!$acc end kernels

2. Method

21

Transformation Process

Hybrid Sources

Build Configuration

transform

global

analyze

information

global information -
applied to architecture

= ¢ implemented —>

3]
Fortran

Build Dependencies

Macro Definitions

=["]=

legend

- hybrid file - file with

CPU+GPU

version

¢ python @ output

@) GNU Make @ input

3

==

user facing

machine

facing

2. Method

20

Callgraph Analysis

CPU
Version

dycore
simulation . | —L lateral /upper boundary > shortwave rad.
damp.
—>
surf. flux
radiation
surface
physics run. 1 ’ b"' d-
L . panetaiym oun arx
p.b. phi calc
Legend
4 . .
routine routine
outside inside

" region " region

routine ‘_» call

with
" region

GPU
Version

dycore

simulation . | —L damp

.__

lateral /upper boundary

t

radiation

™ shortwave rad.

surf. flux

surface
physics run. > -

5 ‘ planetagy"l_)oundarx

p.b. phi calc

2. Method

23

Limitations

. code for programmable caches on GPU (“shared memory”,
“texture memory”) is not generated by tool.

+ relies on standard subroutines, e.g. Fortran function
construct not supported for code running on GPU.

2. Method

o4

Contributions

-

v new granularity abstraction and memory layout

transformation method

1 applied to ASUCA, resulting in >3x speedup in kernel

performance and >2x reduction in processors
required for a full scale run with real data

1 method unique in increasing productivity for porting

coarse-grained codes to GPU

3. Application

+ Hybrid ASUCA
Implementation

- Productivity Results

25

Legend

Host

Time

GPU

Data

Process

Host / device
boundary

Color shading
indicates

computational
intensity due to

repetition

Jump back
(repetition of
loop)

e) !
assimilated real :
weather data !
L J ' -
(A s -) long time step
setup o— initial data >
\ J
. 7
e 3 (2
output < output data ®
& J \ J
: { 3D to 1D interpolation, radiation-, planetary boundary & surface processes }
N\ a)
{ MPI communicate <4 tendency data >
Y, L y e a
' Runge Kutta (n = 3)
, (")
; advection
' \ J
: e w
' coriolis force, curvature & damping
1 _ J
1
' e N
, precipitation
] L Y,
{ MPI communicate } precipitation data J >
I -
short time step \
s \
Runge Kutta (n = 3)

[MPI communicate

] < ‘ h. pressure data

horizontal pressure gradient

[MPI communicate

J 4—[v. pressure data

[
»

vertical pressure gradient,
gravity (1D-Helmholtz)

[MPI communicate

J 4—[T & p data

MPI communicate
v {

}4—[tendency data]

[
>

L y,
(™)
potential temperature & pressure update
& y,
() /
lateral boundary operations /
L y,
L J /
. J
s A
lateral boundary operations
G J
\
-
lateral boundary operations
~
cloud microphysical processes
G y,

Parallelization

-

CPU

NXnode

)4

ny

>

Legend

grid

MPI rank domain

CPU thread & marchi
direction

. GPU thread block

—

NVYnode E’I NVYnode|

= |

ng

3. Application

27

Dynamical Core

- ASUCA’s dynamical core contains many “tight parallel loops”, i.e. fine-grained parallelism.

- CUDA Fortran compiler was most stable during development.

= Chosen as main backend.

= Transformed code must have separate routines per kernel.

= To facilitate tight parallel loops, Hybrid Fortran employs routine splitting.

= Existing code becomes compatible with CUDA Fortran backend.

Legend

Model
Object

is composed of

Module 1 <

3. Application

Routine 1

Routine 2

Specification
Region

Generic
Region

Early Exit
Region

Generic
Region

Parallel
Region 1

Parallel
Region 2

Call Region
1

Call Region
2

Generic
Region

Routine 1

Legend
.
Unchanged Copied
Model Model
o . Object Object
Specification)
Region Sylﬁﬁzsglzed M()\('()sld. })[tod(\l
Object e
Generic
Region is composed of
Early Exit Specification
Region Region
Generic Kernel Parallel
Region Routine 1 Region 1
Call Region Specification
| to Kernel 1 Region
Call Region Kernel Parallel
to Kernel 2 Routine2 Region 2

28

Physical Processes

- Original physical process library from JMA adapted for GPU
(MSMO705 model) provides column-wise models for:

-+ Radiation, (solar, optical cloud absorption, atmospheric reflection
and absorption)

- For efficient use of GPU, memory footprint of indirect radiation
effects was reduced by 10x by using ad-hoc computations for each
long-wave band rather than storing temporary data of all bands.

-+ Planetary boundary layer model
- Wind momentum-, sensible heat- and latent heat surface fluxes
. Kessler-type warm rain model

- Hybrid Fortran’s adaptive parallelization granularity used to generate
GPU version

3. Application 29

mn
A

s,

i

el iidalilinl
Jffinin
| /\

—

i

T T S W e
IIII Iiliiilllli
i
U
) \

(TR RTTTTrT e VT TR

i

([|sssinisinsiissie
N

1l |

i)

3
i
i

RITEH T

B 1111 T 1}

e

I n liiiil'g_i-,'.['\ﬂliiiiiz)
[itnn

| =T-:_
w.—
_\TE

- —
e
. —
- —
F c — - —
= —— 7'7'—
—— i ———)
— | - —
m——
\ ool ke
N) —
L Cmm———
- — —a— %
L —— —
ooh_show
" —
e i |
— R Crd
/— o
o e— -
- -
od_reh

:
T IS

[T T

fii

i o
Lo /
Lo
Lo)
- . : /
- — 4
- ::—_) e
= /
Fom——
= L:-__/
o
- - —
+ —
- —— \\
-
~ -
e
|4 iraze {BoLtend_sove_scaler
r—— . — mm—
— o s— §
o
e
s —
| S R
e —
e e
- — —=
o —
| ———
| Cmme—
" -
- —
- |
—— -
e
fE——
e - R—
T — S ——
- —— |
—— |
o —— / \
- E——
- ——
Y ——— \ -
- p—— ——
- om— m———
o —
-
e
 E—
i N\,
4 e ——
T —
+—

| il

- —
\ oti_imphe.
\ ——
¥’ bl _simey
- —— —
o —
T — - E—
— CEmemee ememme
pol_sheu
-
/)’ | —]
I
. —— Lo =
h |-

:

i
i N

i

PN
<7 BN
AN _
TN

1o ehiiidiiiffuinty

[

I.I;I III

a2 RS

| Rk

&
i
§

Legend

é)

outside of kernels

has
kernels

. inside of kernels

Column-wise Courant-Friedrichs-Lewy Convergence

- Precipitation module uses separate CFL condition per column.

- Due to granularity shift, column-wise CFL convergence requires
change from simple loop break to reduction kernel and masking array
(cfl_reached).

@domainDependant{
attribute (autoDom, present), domName(i,j), domSize (nx,ny)
+
cfl_reached, dt_rk_rest, ...
@end domainDependant

! ... dnttialization of wvartiables

timestep_sed: do
!' ... Runge-Kutta based iterative solution to sedimentation

@parallelRegion{appliesTo (GPU), domName(i, j), domSize(nx, ny)}
if (dt_rk_rest < dt_rk_rest_epsln) then
cfl_reached = .true.
end if
@end parallelRegion

call all_true_for_xy_plane(cfl_reached, all_cfl_reached)

if (all_cfl_reached) then
exit timestep_sed
end if
end do timestep_sed

3. Application

31

Verification

+ Hybrid ASUCA uses 64bit FP arithmetic
throughout.

- Normalized root mean square error was
tested continuously for pressure,
moment and temperature variables.
Stays within 1E-9.

- Performed tests include:

- Radiation test.

- Physical process test for radiation,

planetary boundary layer and surface. '{

~N

QUNA—L = = - : . :
120E 123E 126E 129E 132E 135E 138E 141E 144FE 147E

- Two-dimensional “warm bubble” test.

Figure 3.5: Total cloud cover result for ASUCA

- Various application configurations with using 2km resolution grid and real initial data
real data, including full scale test on
1581x1301x58 grid (2km resolution).

3. Application

32

Productivity Results

Code Reuse and Comparison with OpenACC

Changes Estimate
30000
added code 25000 F
‘ 5 N ; -
whitespace, <4 " 20000 | 008 7220
comments, L T O S Sttt
line con \ e T -
§e 15000}
0 59k> Z‘, F
ﬂ - s R
' n 10000 [| fsmee | e
@ o < N
= = o
o - 5000 [
z_; 9(1) 87k> B _______ /I /
k . PR L
Y > ‘~.O~\
é’ ==) Hybrid ASUCA OpenACC Estimate
64k . [CPU-only physics 0 7122
] storage order macros 116 6098
whitespace,
commznts, B parallelization & data layout DSL 4398 2521
fine cont. K& long-wave radiation 2059 2059
removed code Emodified data spec./init 3519 3519
@ routine & call signatures 1381 1381
[J other 3046 2884

3. Application

4. Performance

34

Performance Model: Reduced Weather Application

oT T temperature _ _
I GVAT 4§ . thermal diffusivity diffuse: 7-|:_)0|nt Von-Neumann-
0t radiation heat type StenC”, 01 25 FLOP/B DP

. radiate: 0.0625 FLOP/B DP

£ 280 &
: o
< . E l.l @ = memory bandwidth bounded
50 100 150 200 % :0) On a” arChiteCtureS (e-g-
D D D ain
e system balance on P100: 7.8
igure 4.1: Output at j = 100.
FLOP/B, 6-core Westmere:
diffuse (.
for j € [Lny]: routine @ call | 2 . 8 FLO P/B)
for i e [1,nx]: for x € [a, b]: loop repeating
simulate > for k € [2,nz-1]: - statements .. statements..
for t € [0,tend]: .. pointwise process .. for each x € [a, b]
: .. boundary conditions .. o
physics _ for k € [1,nz|:
for j € [1,ny]: .. pointwise process
for i € [1,nx]:
—> . surface
® [
. » Planetary boundary
pointwise host/device 1/10
M
Atoutput b Mg b-mMHtoD Myq
tp = Ny * Ny = Ny + My - Ny
P Att?}mestep (: Y : (BWD BWHtoD > Y : RAD>

#timesteps between output pointwise inner diffusion pointwise diffusion boundary

4. Performance

35

Results: Reduced Weather Application

CPU Single Core

GPU (OpenACC)
(Fastest Implementation)

Performance of reduced weather
app. for separately implemented,
vs. Hybrid Fortran generated, vs.
model on 256x256x256 grid, 100

timesteps (fastest implementation)

IJK Order | KIJ Order
1.73s 1.28s Influence of storage order on
0.10s 0.77s execution time
85.0
80.0
75.0 @
~= RN
30.0 i
25.0 Q
) L/ \
g 20.0 Z §
= 15.0 / \
: O\
10.0 / \
B
5.0 = / \
- N A BN é § N
1 Core CPU 6 Core CPU GPU
A No Cache Model 1.1 2.3 23.0
@ OpenMP 1.9 3.6
E OpenACC 27.8
O Hybrid Fortran 3.6 28.8
B Perfect Cache Model 2.7 5.4 81.1

4. Performance

36

800.0
] - W 700.0 £ f7
Results: Hybrid ASUCA s oo //
A 500.0 F /
o 400.0 F /
(@) o
o 300.0 /
= 3
Kernel performance on g 200.0 /
_ 5 100.0 E 7
reduced Grid) 0.0 7.
4 ASUCA Reference, 4 x 6-core Xeon X5670 734.0
(3 ASUCA Reference, 1 x 18-core Xeon E5-2695 v4 456.7
B Hybrid ASUCA, 4 x Tesla K20x 148.9
[JHybrid ASUCA, 1 x Tesla P100 151.1
4 | | | |
] ¢ Strong scaling results
3.5 | . on Reedbush-H,
' 1581 x 1301 x 58 Grid (Japan
> T] and surrounding region)
2.5 —
o 48N
g 2 | | 45N 1 - TS -
0 4
& aon{ T
1.5 = : 39N + ‘,_ i - .
] 36N - 5
1 [—/—Hybrid Code, b -~ T A
Tesla P100] 5
i i 30N S
0.5 | —++Reference Code, i 27N o
18 Core Xeon E5-2695 v4 | | . !
o L v v e e e e e e mNg”/Nw///

10 20 30 40 50 60 110E 115E 120E 125E 130E 135E 140E 145E 150E 155E

#Sockets or #GPUs

4. Performance 37

Results: Hybrid ASUCA

Compute

Halo Communication

80.00

60.00

40.00

20.00

Execution Time [s]

0.00

Number of GPUs

Execution Time [g]

B Short Timestep [ALong Timestep

Dynamics

Bl Precipitation

Dynamics

] Long Timestep

Physics
[J Other
80.00
60-00 [~ 57 NR
40.00 L 9.96 2481
I 4.11
I m 7.19
20.00 F .
0.00 T

Number of GPUs

Impact of communication and modules for strong scaling on 1581 x 1301 x
58 ASUCA Girid, using 2x P100 GPU per node (TSUBAME 3)

4. Performance

Example Application: NICAM Physics

« Cloud microphysics

* Precipitation of rain, snow, graupel

* 111 loops to parallelize
* Due to timing issues and influenza: Roughly one week to work on this

benchmark

* Hours logged: ~31.3.

number of lines of code:

I New: 843

Reference: 10,322

Deleted: 1,000

Hybrid: 10,165

Runtime [s]
Reference,
2x 14-core 0.595
Broadwell [1]
Hybrid,
2x 14-core 0.941
Broadwell [2]
Hybrid, 0232

1x P100 GPU [3]

39

5. Conclusion

40

Summary .

5. Conclusion

Background

v paradigm shift towards throughput oriented design
v GPUs attractive for NWP (high mem. bandwidth)
v productivity and maintainability of GPU approaches lacking

-

Motivation

v Many of today’s NWP- and climate models cannot make
efficient use of high-throughput architectures. We want to find

and prove easily adoptable approach.

Goal

v GPU port for “ASUCA” NWP model in Fortran with minimal
code divergence / minimal learning

Contributions

—

v/ new granularity abstraction and memory layout
transformation method

v applied to ASUCA, resulting in >3x speedup in kernel
performance and >2x reduction in processors required for a
full scale run with real data

v/ method unique in increasing productivity for porting coarse-
grained codes to GPU

41

On all previous projects applying high-throughput architectures to NWP
and climate models [27]:

“All these approaches were effectively addressing fine-
grained parallelism in some way or other without
addressing coarser grained concurrency, and all involved
various levels of "intrusion" into code, from adding/
changing codes, to complete rewrites or translations.”

Prof. Bryan Lawrence

Professor of Weather and Climate Computing
Director of Models and Data @ NCAS

[27] Lawrence, Bryan N., et al. "Crossing the Chasm: How to develop weather and climate models for next
generation computers?”, under review for Geosci. Model Dev. (2017).

5. Conclusion

On how ACME model (DOE) cannot share a single source code for
CPU and GPU due to register pressure[16]:

“The only remedy for this at present is to break the kernel
up into multiple kernels. (...) On the CPU one would want

to keep an element loop fused together for caching
reasons.”

Dr. Matthew R. Norman

Computational Climate Scientist
Oak Ridge National Laboratory

[16] Norman, Matthew R., Azamat Mametjanov, and Mark Taylor. "Exascale Programming Approaches for the
Accelerated Model for Climate and Energy." (2017).

5. Conclusion 43

Concluding Remarks

- All previous projects porting NWP and climate models to high-
throughput architectures had to choose between

- complete rewrite (maximum learning),
. code divergence (poor maintainability),
- efficiency loss on at least one architecture (poor performance).

- This work shows a new approach, which has many potential
applications beyond GPU and beyond NWP.

+ Hybrid Fortran is Open Source and can be applied directly where
suitable.

- Method as documented can be replicated in other applications,
even if Hybrid Fortran is not used.

5. Conclusion

44

Outlook
+ NVIDIA introduced DGX-2 - a 400k USD GPU system
-+ Thesis: Operational 2km ASUCA on a single DGX-2 possible
.+ 16x Tesla V100s totaling 512GB HBM with unified address space

+ Halo communication entirely through 900 GB/s NVSwitch

16x Tesla V100 32GB
12x NVSwitch

—— NVLink Plane Card

. 8XEDRIB/100 GigE

2x Xeon Platinum

1.5TB System Memory

30TB NVME SSDs - PCle Switch Complex

45

Thank you for your attention.

